Given a finite family of squares in the plane, the packing problem asks for the maximum number $\nu$ of pairwise disjoint squares among them, while the hitting problem for the minimum number $\tau$ of points hitting all of them. Clearly, $\tau \ge \nu$. Both problems are known to be NP-hard, even for families of axis-parallel unit squares. The main results of this work provide the first non-trivial bounds for the $\tau / \nu$ ratio for not necessarily axis-parallel squares. We establish an upper bound of $6$ for unit squares and $10$ for squares of varying sizes. The worst ratios we can provide with examples are $3$ and $4$, respectively. For comparison, in the axis-parallel case, the supremum of the considered ratio is in the interval $[\frac{3}{2},2]$ for unit squares and $[\frac{3}{2},4]$ for squares of varying sizes. The methods we introduced for the $\tau/\nu$ ratio can also be used to relate the chromatic number $\chi$ and clique number $\omega$ of squares by bounding the $\chi/\omega$ ratio by $6$ for unit squares and $9$ for squares of varying sizes. The $\tau / \nu$ and $\chi/\omega$ ratios have already been bounded before by a constant for "fat" objects, the fattest and simplest of which are disks and squares. However, while disks have received significant attention, specific bounds for squares have remained essentially unexplored. This work intends to fill this gap.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员