Probabilistic models for sequential data are the basis for a variety of applications concerned with processing timely ordered information. The predominant approach in this domain is given by recurrent neural networks, implementing either an approximate Bayesian approach (e.g. Variational Autoencoders or Generative Adversarial Networks) or a regression-based approach, i.e. variations of Mixture Density networks (MDN). In this paper, we focus on the $\mathcal{N}$-MDN variant, which parameterizes (mixtures of) probabilistic B\'ezier curves ($\mathcal{N}$-Curves) for modeling stochastic processes. While in favor in terms of computational cost and stability, MDNs generally fall behind approximate Bayesian approaches in terms of expressiveness. Towards this end, we present an approach for closing this gap by enabling full Bayesian inference on top of $\mathcal{N}$-MDNs. For this, we show that $\mathcal{N}$-Curves are a special case of Gaussian processes (denoted as $\mathcal{N}$-GP) and then derive corresponding mean and kernel functions for different modalities. Following this, we propose the use of the $\mathcal{N}$-MDN as a data-dependent generator for $\mathcal{N}$-GP prior distributions. We show the advantages granted by this combined model in an application context, using human trajectory prediction as an example.
翻译:序列数据的概率模型是处理及时定购信息的各种应用的基础 。 这一领域的主要方法由常规神经网络提供, 实施一种近似巴伊西亚方法( 例如变异自动计算器或基因反转网络) 或基于回归的方法, 即混凝土网络的变异 。 在本文中, 我们侧重于 $\ mathcal{ N} $- MDN 变量, 该变量是计算性进程( macal{ N} $- Curves ) 的参数性 B\'ezier 概率曲线 ( macal_ massal{ N} $- Curves ) 。 在计算成本和稳定性方面, MDNDN通常落后于近似于巴伊斯方法的变异位 。 在本文中, 我们提出一种缩小这一差距的方法, 在 $\ mathcal_ mal_ mal_ mal_ mal_ mal_ $_ 美元 美元/ curves a legnal- degnal_ a deal_ gal_ max a case a deal_ gal_ gal_ gal_ gal_ as_ a dal_ a dal_ as a dur_ a ma_ max__ us_ us a das a drog_ a discal_ a das a a discal_ ex a discal__ ex a ex a ex a ex a a a a disciscal_) ex a ex a ex a ex a ex a ex a ex a a a ex a a a a a a a a a ex a a a a a a a ex a a a a a a a a a a a a a a ex a disciscal_ a a a a a a a ex a a a ex a ex a ex a ex a ex a ex a ex a ex a a a a a a a a a a a discal_ a a a a a dis a ex a ex a a a ex a a a dis a ex a ex a ex a ex a ex a