We investigate one of the most basic problems in streaming algorithms: approximating the number of elements in the stream. In 1978, Morris famously gave a randomized algorithm achieving a constant-factor approximation error for streams of length at most N in space $O(\log \log N)$. We investigate the pseudo-deterministic complexity of the problem and prove a tight $\Omega(\log N)$ lower bound, thus resolving a problem of Goldwasser-Grossman-Mohanty-Woodruff.
翻译:我们研究了流算法中最基本的问题之一:近似流中元素的数量。1978年,摩里斯(Morris)著名地提出了一种随机算法,在空间$O(\log\log N)$中实现长度不超过N的流的定值因子逼近误差。我们研究了问题的伪确定性复杂性,并证明了紧密的$\Omega(\log N)$下限,从而解决了戈德瓦塞-格罗斯曼-莫汉提-伍德拉夫的一个问题。