In high-dimensional regression, we attempt to estimate a parameter vector $\beta_0\in\mathbb{R}^p$ from $n\lesssim p$ observations $\{(y_i,x_i)\}_{i\leq n}$ where $x_i\in\mathbb{R}^p$ is a vector of predictors and $y_i$ is a response variable. A well-established approach uses convex regularizers to promote specific structures (e.g. sparsity) of the estimate $\widehat{\beta}$, while allowing for practical algorithms. Theoretical analysis implies that convex penalization schemes have nearly optimal estimation properties in certain settings. However, in general the gaps between statistically optimal estimation (with unbounded computational resources) and convex methods are poorly understood. We show that when the statistican has very simple structural information about the distribution of the entries of $\beta_0$, a large gap frequently exists between the best performance achieved by any convex regularizer satisfying a mild technical condition and either (i) the optimal statistical error or (ii) the statistical error achieved by optimal approximate message passing algorithms. Remarkably, a gap occurs at high enough signal-to-noise ratio if and only if the distribution of the coordinates of $\beta_0$ is not log-concave. These conclusions follow from an analysis of standard Gaussian designs. Our lower bounds are expected to be generally tight, and we prove tightness under certain conditions.


翻译:在高维回归中,我们试图从 $(y_i,x_i)\\i\i\leq n}$(x_i\in\mathb{R ⁇ p$) 是预测器的矢量, $(i_i)是响应变量。 一种成熟的方法使用 comvex 正规化器促进特定结构( 例如, 缩放) $( 全域) 的估算值, 同时允许实际的算法。 理论分析意味着 comvex 惩罚性计划在某些环境下几乎具有最佳的估计属性 $( y_i, x_i)\\ i\ i\ leq n}$( 美元 美元 美元 ) 。 然而, 总的来说, 统计性的最佳估计( 有未限制的计算资源) 和 convex 方法之间的缺口很少被理解。 当统计性结构信息非常简单的关于 $( beta_ 0 美元) 条目的分布结构信息时, 经常存在一个巨大的差距: 任何符合较轻技术条件的 convex manx manferfor manizerizer 和 (i) lax lax lax lax lax lax lax lax lax lax lax lax) 通常不是 最接近的精确的统计性分析。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
84+阅读 · 2020年12月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
84+阅读 · 2020年12月5日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员