Discrete variational methods show excellent performance in numerical simulations of different mechanical systems. In this paper, we introduce an iterative procedure for the solution of discrete variational equations for boundary value problems. More concretely, we explore a parallelization strategy that leverages the capabilities of multicore CPUs and GPUs (graphics cards). We study this parallel method for higher-order Lagrangian systems, which appear in fully-actuated problems and beyond. The most important part of the paper is devoted to a precise study of different convergence conditions for these methods. We illustrate their excellent behavior in some interesting examples, namely Zermelo's navigation problem, a fuel-optimal navigation problem, interpolation problems or in a fuel optimization problem for a controlled 4-body problem in astrodynamics showing the potential of our method.
翻译:分辨变异方法显示不同机械系统数字模拟的优异性能。 在本文中, 我们引入了用于解决边界值问题离散变异方程式的迭代程序。 更具体地说, 我们探索了一种平行战略, 利用多极CPU和GPU( 绘图卡) 的能力。 我们研究了高等Lagrangian 系统的平行方法, 这种方法出现在完全触动的问题和问题之外。 本文最重要的部分是精确研究这些方法的不同趋同条件。 我们用一些有趣的例子来说明这些方法的出色行为, 即 Zermelo 的导航问题、 燃料最佳导航问题、 内插问题或燃料优化问题, 以显示我们方法潜力的天体动力学中受控的四体问题 。