Machine learning typically presupposes classical probability theory which implies that aggregation is built upon expectation. There are now multiple reasons to motivate looking at richer alternatives to classical probability theory as a mathematical foundation for machine learning. We systematically examine a powerful and rich class of such alternatives, known variously as spectral risk measures, Choquet integrals or Lorentz norms. We present a range of characterization results, and demonstrate what makes this spectral family so special. In doing so we demonstrate a natural stratification of all coherent risk measures in terms of the upper probabilities that they induce by exploiting results from the theory of rearrangement invariant Banach spaces. We empirically demonstrate how this new approach to uncertainty helps tackling practical machine learning problems.
翻译:机械学习通常以经典概率理论为前提,它意味着聚合是建立在预期基础上的。现在有多种理由激励人们寻找比古典概率理论更丰富的替代方法,作为机器学习的数学基础。我们系统地研究一系列强大和丰富的替代方法,有多种不同的叫法,如光谱风险计量、Choquet集成物或Lorentz规范。我们提出一系列特征分析结果,并展示是什么使这个光谱大家庭变得如此特别。在这样做的时候,我们展示了所有一致的风险措施的自然分层,从它们通过利用班纳奇空间变异性重新布局理论的结果而引发的高度概率方面来说。我们用经验来证明这种新的不确定性方法如何有助于解决实际机器学习问题。