Automated test techniques usually generate unit tests with higher code coverage than manual tests. However, the readability of automated tests is crucial for code comprehension and maintenance. The readability of unit tests involves many aspects. In this paper, we focus on test inputs. The central limitation of existing studies on input readability is that they focus on test codes alone without taking the tested source codes into consideration, making them either ignore different source codes' different readability requirements or require manual efforts to write readable inputs. However, we observe that the source codes specify the contexts that test inputs must satisfy. Based on such observation, we introduce the \underline{C}ontext \underline{C}onsistency \underline{C}riterion (a.k.a, C3), which is a readability measurement tool that leverages Large Language Models to extract primitive-type (including string-type) parameters' readability contexts from the source codes and checks whether test inputs are consistent with those contexts. We have also proposed EvoSuiteC3. It leverages C3's extracted contexts to help EvoSuite generate readable test inputs. We have evaluated C3's performance on $409$ \java{} classes and compared manual and automated tests' readability under C3 measurement. The results are two-fold. First, The Precision, Recall, and F1-Score of C3's mined readability contexts are \precision{}, \recall{}, and \fone{}, respectively. Second, under C3's measurement, the string-type input readability scores of EvoSuiteC3, ChatUniTest (an LLM-based test generation tool), manual tests, and two traditional tools (EvoSuite and Randoop) are $90\%$, $83\%$, $68\%$, $8\%$, and $8\%$, showing the traditional tools' inability in generating readable string-type inputs.


翻译:暂无翻译

0
下载
关闭预览

相关内容

一个旨在提升互联网阅读体验的工具。 readability.com/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Phase-aware Speech Enhancement with Deep Complex U-Net
Arxiv
17+阅读 · 2018年4月2日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员