In this paper, we analyze status update systems modeled through the Stochastic Hybrid Systems (SHSs) tool. Contrary to previous works, we allow the system's transition dynamics to be polynomial functions of the Age of Information (AoI). This dependence allows us to encapsulate many applications and opens the door for more sophisticated systems to be studied. However, this same dependence on the AoI engenders technical and analytical difficulties that we address in this paper. Specifically, we first showcase several characteristics of the age processes modeled through the SHSs tool. Then, we provide a framework to establish the Lagrange stability and positive recurrence of these processes. Building on this, we provide an approach to compute the m-th moment of the age processes. Interestingly, this technique allows us to approximate the average age by solving a simple set of linear equations. Equipped with this approach, we also provide a sequential convex approximation method to optimize the average age by calibrating the parameters of the system. Finally, we consider an age-dependent CSMA environment where the backoff duration depends on the instantaneous age. By leveraging our analysis, we contrast its performance to the age-blind CSMA and showcase the age performance gain provided by the former.
翻译:在本文中,我们分析通过Stochastic 混合系统(SHS)工具建模的状态更新系统。 与以前的工作相反, 我们允许该系统的过渡动态成为信息时代(AoI)的多元功能。 这种依赖性使我们能够包罗许多应用程序,打开了需要研究的更尖端系统的大门。 但是,对AoI的同样依赖也造成了本文中我们处理的技术和分析困难。 具体地说, 我们首先展示了通过SHS工具建模的年龄进程的若干特点。 然后, 我们提供了一个框架, 以建立拉格兰的稳定性和这些进程的正面重现。 在此基础上, 我们提供了一种方法, 来计算时代过程的M-th时间。 有趣的是, 这种技术使我们能够通过简单的线性等式组合来接近平均年龄。 在采用这一方法之后, 我们还提供了一种按顺序排列曲线的近似比法, 通过校准系统的参数来优化平均年龄。 最后, 我们考虑一个依赖年龄的CSMA环境, 其后期取决于瞬间年龄。 我们通过利用我们的分析, 将其表现与年龄对比, 我们通过前的变换了CA。