Uncovering data generative factors is the ultimate goal of disentanglement learning. Although many works proposed disentangling generative models able to uncover the underlying generative factors of a dataset, so far no one was able to uncover OOD generative factors (i.e., factors of variations that are not explicitly shown on the dataset). Moreover, the datasets used to validate these models are synthetically generated using a balanced mixture of some predefined generative factors, implicitly assuming that generative factors are uniformly distributed across the datasets. However, real datasets do not present this property. In this work we analyse the effect of using datasets with unbalanced generative factors, providing qualitative and quantitative results for widely used generative models. Moreover, we propose TC-VAE, a generative model optimized using a lower bound of the joint total correlation between the learned latent representations and the input data. We show that the proposed model is able to uncover OOD generative factors on different datasets and outperforms on average the related baselines in terms of downstream disentanglement metrics.


翻译:---- 摘要:揭示数据生成因素是分离学习的最终目标。尽管许多研究提出了分离生成模型,能够揭示数据集的潜在生成因素,但至今还没有人能够揭示OOD(即数据集上没有明确显示的变化因素)的生成因素。此外,用于验证这些模型的数据集是使用某些预定义的生成因素的平衡混合物合成的,隐含地假定生成因素在数据集中是均匀分布的。但是,真实数据集不具备这个属性。在这项工作中,我们分析了使用生成因素不平衡的数据集的影响,并为广泛使用的生成模型提供定性和定量结果。此外,我们提出TC-VAE,这是一种生成模型,使用学习的潜在表示和输入数据之间的联合总相关性的下界进行优化。我们展示了所提出的模型能够在不同的数据集上揭示OOD生成因素,并在下游分离度量方面的平均表现优于相关基线方法。

0
下载
关闭预览

相关内容

数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。
Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。
【NUS-Xavier教授】生成模型VAE与GAN,69页ppt
专知会员服务
71+阅读 · 2022年4月6日
专知会员服务
32+阅读 · 2021年9月16日
异常检测(Anomaly Detection)综述
极市平台
20+阅读 · 2020年10月24日
生成对抗网络GANs学习路线
专知
36+阅读 · 2019年6月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月24日
Arxiv
14+阅读 · 2022年5月6日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
VIP会员
相关VIP内容
【NUS-Xavier教授】生成模型VAE与GAN,69页ppt
专知会员服务
71+阅读 · 2022年4月6日
专知会员服务
32+阅读 · 2021年9月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员