Computing the distance parameters of a network, including the diameter, radius, eccentricities and the all-pairs shortest paths (APSP) is a central problem in distributed computing. This paper investigates he dtistance parameters in the quantum CONGEST models and establishes almost linear lower bounds on eccentricities and APSP, which match the classical upper bounds. Our results imply that there is not quantum speedup for these two problems. In contrast with the diameter and radius, exchanging quantum messages is able to save the communication when the networks have low diameters [Le Gall and Magniez, PODC 2018]. We obtain the lower bounds via a reduction from the two-way quantum communication complexity of the set intersection [Razborov, Izvestiya Mathematics 2003].
翻译:计算网络的距离参数, 包括直径、 半径、 偏心和全孔最短路径( APSP) 是分布式计算的一个中心问题 。 本文调查了他在量子 CONEST 模型中的亮度参数, 并确定了与经典的上界相匹配的偏心和 APSP 几乎线性下限 。 我们的结果表明, 这两个问题没有量子加速。 与直径和半径相比, 当网络直径低时, 交换量子信息能够保存通信。 我们通过降低定置交叉点的双向量通信复杂性来获取下限 [Razborov, Izvestiya Mathematics 2003] 。