We showcase a variety of functions and classes that implement sampling procedures with improved exploration of the parameter space assisted by machine learning. Special attention is paid to setting sane defaults with the objective that adjustments required by different problems remain minimal. This collection of routines can be employed for different types of analysis, from finding bounds on the parameter space to accumulating samples in areas of interest. In particular, we discuss two methods assisted by incorporating different machine learning models: regression and classification. We show that a machine learning classifier can provide higher efficiency for exploring the parameter space. Also, we introduce a boosting technique to improve the slow convergence at the start of the process. The use of these routines is better explained with the help of a few examples that illustrate the type of results one can obtain. We also include examples of the code used to obtain the examples as well as descriptions of the adjustments that can be made to adapt the calculation to other problems. We finalize by showing the impact of these techniques when exploring the parameter space of the two Higgs doublet model that matches the measured Higgs Boson signal strength. The code used for this paper and instructions on how to use it are available on the web.
翻译:我们展示了各种功能和类别,这些功能和类别执行抽样程序,改进了通过机器学习对参数空间的探索。我们特别注意设定正常缺省,目标是使不同问题所需的调整保持在最低程度。这些常规收集可以用于不同类型的分析,从查找参数空间的界限到在感兴趣的地区积累样本。我们特别讨论了两种方法,通过采用不同的机器学习模型(回归和分类)来帮助实施取样程序。我们显示,机器学习分类器可以提供更高的效率来探索参数空间。此外,我们引入一种增强技术,以改善进程开始时缓慢的趋同。在几个例子的帮助下,这些常规的使用得到了更好的解释,这些例子说明了人们可以取得的结果的类型。我们还将一些用于获取实例的代码以及用于调整计算方法以适应其他问题的描述。我们最后通过展示这些技术在探索两个希格斯双倍模型的参数空间时的影响,这些参数空间与测量的希格斯·博森信号强度相匹配。本文使用的代码和关于如何使用它的指示可以在网上找到。