A fundamental quantity of interest in Shannon theory, classical or quantum, is the optimal error exponent of a given channel W and rate R: the constant E(W,R) which governs the exponential decay of decoding error when using ever larger codes of fixed rate R to communicate over ever more (memoryless) instances of a given channel W. Here I show that a bound by Hayashi [CMP 333, 335 (2015)] for an analogous quantity in privacy amplification implies a lower bound on the error exponent of communication over symmetric classical-quantum channels. The resulting bound matches Dalai's [IEEE TIT 59, 8027 (2013)] sphere-packing upper bound for rates above a critical value, and reproduces the well-known classical result for symmetric channels. The argument proceeds by first relating the error exponent of privacy amplification to that of compression of classical information with quantum side information, which gives a lower bound that matches the sphere-packing upper bound of Cheng et al. [IEEE TIT 67, 902 (2021)]. In turn, the polynomial prefactors to the sphere-packing bound found by Cheng et al. may be translated to the privacy amplification problem, sharpening a recent result by Li, Yao, and Hayashi [arXiv:2111.01075 [quant-ph]], at least for linear randomness extractors.
翻译:对香农理论(古典或量度)的兴趣的一个基本数量,是对香农理论(古典或量度)的兴趣,是对某频道W和R的最佳错误表示:常数E(W,R),该常数E(W,R)在使用更大型固定利率R代码进行更远(模无)的通信时,对某频道W的解码错误的指数衰减进行调节。这里我表明,Hayashi[CMP 333, 335(2015)]对类似数量的隐私放大的束缚,意味着对某频道W和R的对称古典-夸特的对称频道的通信错误的偏差限制程度较低。由此产生的约束与达赖的[IEET TIT 59, 8027(2013) 相匹配,使球体外包装与超过关键值的速率高度一致,并复制了已知的对符号频道的经典结果。首先将隐私放大的错误与用量子侧信息的缩略信息压缩的经典信息相挂钩,这给与Cheng 等人的域包装的上框。[IEEEEE, TIT, 902 (2021) 最不为随机的框框 。反过来, 将最近的基质前10的磁质和直成成为磁质的磁质的磁质变成成为磁的YX 的磁质的磁的磁的磁质, 。