Behavior planning and decision-making are some of the biggest challenges for highly automated systems. A fully automated vehicle (AV) is confronted with numerous tactical and strategical choices. Most state-of-the-art AV platforms implement tactical and strategical behavior generation using finite state machines. However, these usually result in poor explainability, maintainability and scalability. Research in robotics has raised many architectures to mitigate these problems, most interestingly behavior-based systems and hybrid derivatives. Inspired by these approaches, we propose a hierarchical behavior-based architecture for tactical and strategical behavior generation in automated driving. It is a generalizing and scalable decision-making framework, utilizing modular behavior blocks to compose more complex behaviors in a bottom-up approach. The system is capable of combining a variety of scenario- and methodology-specific solutions, like POMDPs, RRT* or learning-based behavior, into one understandable and traceable architecture. We extend the hierarchical behavior-based arbitration concept to address scenarios where multiple behavior options are applicable but have no clear priority against each other. Then, we formulate the behavior generation stack for automated driving in urban and highway environments, incorporating parking and emergency behaviors as well. Finally, we illustrate our design in an explanatory evaluation.
翻译:行为规划和决策是高度自动化系统面临的最大挑战。 完全自动化的飞行器(AV)面临许多战术和战略选择。 大多数最先进的AV平台使用有限的国家机器实施战术和战略行为生成。 然而,这些平台通常导致解释性、可维持性和可缩缩性差。 机器人研究提出了许多结构来缓解这些问题,其中最有趣的是基于行为的系统和混合衍生物。 在这些方法的启发下,我们为自动驾驶的战术和战略行为生成提出了一个基于等级的行为结构。 这是一个普遍化和可扩缩的决策框架,使用模块化行为块来以自下而上的方式构建更复杂的行为。 该系统能够将各种情景和方法上的具体解决方案(如POMDPs、RRT*或基于学习的行为)整合到一个可以理解和可追踪的结构中。 我们把基于行为的等级仲裁概念扩展为适用于多种行为选项但彼此没有明确优先度的情景。 然后,我们为城市和高速公路环境的自动驱动设计行为生成堆, 整合和应急行为评估。