We present a novel two-layer hierarchical reinforcement learning approach equipped with a Goals Relational Graph (GRG) for tackling the partially observable goal-driven task, such as goal-driven visual navigation. Our GRG captures the underlying relations of all goals in the goal space through a Dirichlet-categorical process that facilitates: 1) the high-level network raising a sub-goal towards achieving a designated final goal; 2) the low-level network towards an optimal policy; and 3) the overall system generalizing unseen environments and goals. We evaluate our approach with two settings of partially observable goal-driven tasks -- a grid-world domain and a robotic object search task. Our experimental results show that our approach exhibits superior generalization performance on both unseen environments and new goals.
翻译:我们提出了一种新型的两级强化学习方法,配有目标关系图(GRG),用于处理部分可观测的目标驱动的任务,如目标驱动的视觉导航。我们的GRG通过一个分散分类过程,抓住目标空间所有目标的基本关系。这个过程有助于:(1) 高级别网络,提出实现指定最终目标的次级目标;(2) 低层次网络,争取最佳政策;和(3) 总体系统,普及看不见的环境和目标。我们用两个部分可观测的目标驱动任务来评估我们的方法,一个是网域域,另一个是机器人物体搜索任务。我们的实验结果显示,我们的方法在看不见的环境和新目标上都表现优异。