Encrypted control systems allow to evaluate feedback laws on external servers without revealing private information about state and input data, the control law, or the plant. While there are a number of encrypted control schemes available for linear feedback laws, only few results exist for the evaluation of more general control laws. Recently, an approach to encrypted polynomial control was presented, relying on two-party secret sharing and an inter-server communication protocol using homomorphic encryption. As homomorphic encryptions are much more computationally demanding than secret sharing, they make up for a tremendous amount of the overall computational demand of this scheme. For this reason, in this paper, we investigate schemes for secure polynomial control based solely on secret sharing. We introduce a novel secure three-party control scheme based on three-party computation. Further, we propose a novel $n$-party control scheme to securely evaluate polynomial feedback laws of arbitrary degree without inter-server communication. The latter property makes it easier to realize the necessary requirement regarding non-collusion of the servers, with which perfect security can be guaranteed. Simulations suggest that the presented control schemes are many times less computationally demanding than the two-party scheme mentioned above.
翻译:加密控制系统可以评估外部服务器的反馈法,而不必透露关于国家和输入数据、控制法或工厂的私人信息。虽然在线性反馈法方面有一些加密的加密控制计划,但是在评价更一般性的控制法方面,结果很少。最近,提出了加密多党控制办法,依靠双方秘密共享和使用同质加密的服务器间通信协议。由于同质加密在计算上的要求比秘密共享要高得多,因此它们弥补了这一计划整个计算需求的巨大数量。为此原因,我们在本文件中调查了仅以秘密共享为基础的安全多边控制计划。我们采用了基于三党计算的新的安全三方控制计划。此外,我们提出一个新的美元方控制方案,以确保在没有服务器间通信的情况下对任意程度的多党反馈法进行安全评价。后一种财产使得更容易实现关于服务器非混合的必要要求,可以保证完美的安全。模拟表明所提出的控制计划比上面提到的两党在计算上的要求要少很多倍。