We introduce the 2-sorted counting logic $GC^k$ that expresses properties of hypergraphs. This logic has available k "blue" variables to address edges, an unbounded number of "red" variables to address vertices of a hypergraph, and atomic formulas E(e,v) to express that vertex v is contained in edge e. We show that two hypergraphs H, H' satisfy the same sentences of the logic $GC^k$ if, and only if, they are homomorphism indistinguishable over the class of hypergraphs of generalised hypertree width at most k. Here, H, H' are called homomorphism indistinguishable over a class C if for every hypergraph G in C the number of homomorphisms from G to H equals the number of homomorphisms from G to H'. This result can be viewed as a generalisation (from graphs to hypergraphs) of a result by Dvorak (2010) stating that any two (undirected, simple, finite) graphs H, H' are indistinguishable by the (k+1)-variable counting logic $C^{k+1}$ if, and only if, they are homomorphism indistinguishable on the class of graphs of tree width at most k.


翻译:有界广义超树宽下的超图同态计数:逻辑特征 翻译后的摘要: 我们引入 2-sorted 计数逻辑 $GC^k$,表达超图的特征。此逻辑可用 k 个“蓝色”变量来表示边,用不受限的“红色”变量来表示超图的顶点,以及原子公式 E(e, v) 来表达顶点 v 是否包含在边 e 中。我们证明:当且仅当两个超图 $H, H'$ 在广义超树宽不超过 k 的超图类中无法辨别同态时,它们都满足逻辑 $GC^k$ 中的相同句子。这里,$H, H'$ 被称为在类 C 中无法辨别同态,当对于 C 中的每个超图 G,从 G 到 H 的同态数量等于从 G 到 $H'$ 的同态数量。此结果可视为 Dvorak(2010 年)结果的推广(从图到超图),该结果声明任何两个(无向、简单、有限)图 $H, H'$ 都可以通过(k+1)变量计数逻辑 $C^{k+1}$ 无法辨别,当且仅当它们在树宽不超过 k 的图类上无法辨别同态。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
125+阅读 · 2021年6月4日
论文浅尝 | Explainable Link Prediction in Knowledge Hypergraphs
开放知识图谱
1+阅读 · 2022年11月11日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
一文带你浏览Graph Transformers
PaperWeekly
1+阅读 · 2022年7月8日
图机器学习经典算法 louvain 完全解读
图与推荐
10+阅读 · 2020年8月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【泡泡一分钟】RoomNet:端到端房屋布局估计
泡泡机器人SLAM
18+阅读 · 2018年12月4日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月4日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
【图神经网络导论】Intro to Graph Neural Networks,176页ppt
专知会员服务
125+阅读 · 2021年6月4日
相关资讯
论文浅尝 | Explainable Link Prediction in Knowledge Hypergraphs
开放知识图谱
1+阅读 · 2022年11月11日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
一文带你浏览Graph Transformers
PaperWeekly
1+阅读 · 2022年7月8日
图机器学习经典算法 louvain 完全解读
图与推荐
10+阅读 · 2020年8月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【泡泡一分钟】RoomNet:端到端房屋布局估计
泡泡机器人SLAM
18+阅读 · 2018年12月4日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员