The brains of all bilaterally symmetric animals on Earth are are divided into left and right hemispheres. The anatomy and functionality of the hemispheres have a large degree of overlap, but there are asymmetries and they specialize to possess different attributes. Several studies have used computational models to mimic hemispheric asymmetries with a focus on reproducing human data on semantic and visual processing tasks. In this study, we aimed to understand if and how dual hemispheres can improve ML performance at a given task. We propose a bilateral artificial neural network that imitates a lateralization observed in nature: that the left hemisphere specializes in specificity and the right in generalities. We used two ResNet-9 convolutional neural networks with different training objectives and tested it on an image classification task. The bilateral architecture outperformed architectures of similar representational capacity that don't exploit differential specialization. It demonstrated the efficacy of bilateralism and constitutes a principle that could be incorporated into other computational neuroscientific models and used as an inductive bias when designing new AI systems.
翻译:地球上所有双边对称动物的大脑被分为左半球和右半球。 半球的解剖和功能存在很大程度的重叠, 但有不对称, 它们专门拥有不同的属性。 一些研究使用计算模型模拟半球的不对称, 重点是复制关于语义和视觉处理任务的人类数据。 在这次研究中, 我们的目标是了解两半球是否和如何在一项特定任务中改善ML的性能。 我们建议建立一个双边人造神经网络, 模仿在自然中观察到的横向化: 左半球在特性和权利上具有特殊性。 我们使用两个具有不同培训目标的ResNet- 9 革命神经网络, 并在图像分类任务中测试它。 双边结构超越了类似表达能力的结构, 而这些结构没有利用差别化。 它展示了双边主义的功效, 并构成一项原则, 可以纳入其他计算神经科学模型, 并在设计新的AI系统时用作导导导偏。