New Attacks are increasingly used by attackers everyday but many of them are not detected by Intrusion Detection Systems as most IDS ignore raw packet information and only care about some basic statistical information extracted from PCAP files. Using networking programs to extract fixed statistical features from packets is good, but may not enough to detect nowadays challenges. We think that it is time to utilize big data and deep learning for automatic dynamic feature extraction from packets. It is time to get inspired by deep learning pre-trained models in computer vision and natural language processing, so security deep learning solutions will have its pre-trained models on big datasets to be used in future researches. In this paper, we proposed a new approach for embedding packets based on character-level embeddings, inspired by FastText success on text data. We called this approach FastPacket. Results are measured on subsets of CIC-IDS-2017 dataset, but we expect promising results on big data pre-trained models. We suggest building pre-trained FastPacket on MAWI big dataset and make it available to community, similar to FastText. To be able to outperform currently used NIDS, to start a new era of packet-level NIDS that can better detect complex attacks.
翻译:袭击者每天越来越多地使用新袭击,但入侵探测系统并未发现其中许多新袭击,因为大多数IDS忽视了原始数据包信息,只关心从 PCAP 文件中提取的一些基本统计信息。 利用网络程序从包中提取固定统计特征是好的, 但可能不足以检测当前的挑战。 我们认为,现在是利用大数据和深层次学习从包中自动提取动态特征数据的时候了。 现在是利用大数据和深层次学习从数据包中自动提取动态特征数据的时候了。 现在是从计算机视觉和自然语言处理中深层次学习的预先培训模型和自然语言处理中获取灵感的时候, 因此, 安全深层学习解决方案将拥有其预先培训的关于大数据集的模型, 供未来研究使用。 在本文中, 我们提出了基于字符级嵌入的新的包嵌入方法, 由 FastText 文本数据的成功启发。 我们称之为 FastPackPacket。 有关CIC- IDS-2017 数据集的子集测量结果的时候了, 但我们期待大数据预培训模型取得有希望的结果。 我们建议在 MIWI 大型数据集上建立预先培训的快包, 和向社区提供新数据包, 类似快速数据串。 。 能够超越 IMDSDSDS 的系统, 的复杂地探测到目前使用的系统。