We propose a new estimation method for the blind source separation model of Bachoc et al. (2020). The new estimation is based on an eigenanalysis of a positive definite matrix defined in terms of multiple normalized spatial local covariance matrices, and, therefore, can handle moderately high-dimensional random fields. The consistency of the estimated mixing matrix is established with explicit error rates even when the eigen-gap decays to zero slowly. The proposed method is illustrated via both simulation and a real data example.
翻译:我们为Bachoc等人(2020年)的盲源分离模型提出了新的估算方法,新的估算依据是对一个肯定的矩阵进行叶基因分析,该矩阵以多个正常的当地空间共变矩阵为定义,因此可以处理中度高维随机字段。即使eigen-gap慢慢衰减为零,估计混合矩阵的一致性也以明确的误差率确定。提议的方法通过模拟和真实的数据示例加以说明。