For a singular integral equation on an interval of the real line, we study the behavior of the error of a delta-delta discretization. We show that the convergence is non-uniform, between order $O(h^{2})$ in the interior of the interval and a boundary layer where the consistency error does not tend to zero.
翻译:针对实线区间上的奇异积分方程,我们研究了Delta-Delta离散化误差的行为。我们证明,收敛性在区间内部为$O(h^{2})$ ,而在边界层中一致性误差并不趋近于零。