We consider the problem of predicting a response $Y$ from a set of covariates $X$ when test and training distributions differ. Since such differences may have causal explanations, we consider test distributions that emerge from interventions in a structural causal model, and focus on minimizing the worst-case risk. Causal regression models, which regress the response on its direct causes, remain unchanged under arbitrary interventions on the covariates, but they are not always optimal in the above sense. For example, for linear models and bounded interventions, alternative solutions have been shown to be minimax prediction optimal. We introduce the formal framework of distribution generalization that allows us to analyze the above problem in partially observed nonlinear models for both direct interventions on $X$ and interventions that occur indirectly via exogenous variables $A$. It takes into account that, in practice, minimax solutions need to be identified from data. Our framework allows us to characterize under which class of interventions the causal function is minimax optimal. We prove sufficient conditions for distribution generalization and present corresponding impossibility results. We propose a practical method, NILE, that achieves distribution generalization in a nonlinear IV setting with linear extrapolation. We prove consistency and present empirical results.


翻译:我们认为,如果测试和培训分布不尽相同,则从一组共同变差美元中预测答复美元美元的问题就会发生。由于这种差异可能有因果关系的解释,我们考虑结构性因果模型中的干预措施所产生的测试分布,并侧重于尽量减少最坏风险。结果回归模型在对共同变差的任意干预下会逆转其直接原因的应对措施,但从上述意义上说,这些模型并不总是最佳的。例如,对于线性模型和约束性干预,其他解决方案已证明是最理想的。我们引入了正式的分配通用框架,使我们能够在部分观测的非线性模型中分析上述问题,用于直接干预的美元和非线性模型,用于直接干预和通过外部变量间接发生的干预。考虑到在实践中,需要从数据中找出小负式解决方案。我们的框架使我们能够确定哪些类型的干预因果功能是最小的。我们证明分配通用和提出相应的不可能结果的条件是最佳的。我们提出了一个切实可行的方法,即NILE,在非线性四号模型中实现当前非线性普遍分配结果。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年7月15日
专知会员服务
15+阅读 · 2021年5月21日
【ICML2020-浙江大学】对抗性互信息的文本生成
专知会员服务
43+阅读 · 2020年7月4日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
38+阅读 · 2021年8月31日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
3+阅读 · 2014年10月9日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员