We present a general methodology to construct triplewise independent sequences of random variables having a common but arbitrary marginal distribution $F$ (satisfying very mild conditions). For two specific sequences, we obtain in closed form the asymptotic distribution of the sample mean. It is non-Gaussian (and depends on the specific choice of $F$). This allows us to illustrate the extent of the 'failure' of the classical central limit theorem (CLT) under triplewise independence. Our methodology is simple and can also be used to create, for any integer $K$, new $K$-tuplewise independent sequences that are not mutually independent. For $K \geq 4$, it appears that the sequences created using our methodology do verify a CLT, and we explain heuristically why this is the case.


翻译:我们提出了一个总体方法,用以构建三维独立的随机变量序列,这些变量具有共同但任意的边际分配费$(满足非常温和的条件),对于两个具体序列,我们以封闭的形式获得了样本平均值的无光度分布。它不是Gausian(并且取决于具体选择的$F美元)。这使我们能够说明在三维独立的情况下经典中央界限理论(CLT)的“失败”程度。我们的方法很简单,也可以用来为任何整数的$K美元创建非相互独立的新的基元-双基元独立序列。对于$K\geq 4美元,我们用我们的方法设定的序列似乎确实验证了CLT,我们从理论上解释为什么情况如此。

0
下载
关闭预览

相关内容

【硬核书】树与网络上的概率,716页pdf
专知会员服务
72+阅读 · 2021年12月8日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
6+阅读 · 2019年11月14日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Learning to Importance Sample in Primary Sample Space
Arxiv
3+阅读 · 2018年2月24日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关VIP内容
【硬核书】树与网络上的概率,716页pdf
专知会员服务
72+阅读 · 2021年12月8日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
相关论文
Arxiv
64+阅读 · 2021年6月18日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
6+阅读 · 2019年11月14日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Learning to Importance Sample in Primary Sample Space
Arxiv
3+阅读 · 2018年2月24日
Arxiv
3+阅读 · 2017年12月1日
Top
微信扫码咨询专知VIP会员