Neural link predictors are immensely useful for identifying missing edges in large scale Knowledge Graphs. However, it is still not clear how to use these models for answering more complex queries that arise in a number of domains, such as queries using logical conjunctions ($\land$), disjunctions ($\lor$) and existential quantifiers ($\exists$), while accounting for missing edges. In this work, we propose a framework for efficiently answering complex queries on incomplete Knowledge Graphs. We translate each query into an end-to-end differentiable objective, where the truth value of each atom is computed by a pre-trained neural link predictor. We then analyse two solutions to the optimisation problem, including gradient-based and combinatorial search. In our experiments, the proposed approach produces more accurate results than state-of-the-art methods -- black-box neural models trained on millions of generated queries -- without the need of training on a large and diverse set of complex queries. Using orders of magnitude less training data, we obtain relative improvements ranging from 8% up to 40% in Hits@3 across different knowledge graphs containing factual information. Finally, we demonstrate that it is possible to explain the outcome of our model in terms of the intermediate solutions identified for each of the complex query atoms.


翻译:神经链接预测器对于在大规模知识图表中识别缺失的边缘非常有用。 但是,目前还不清楚如何使用这些模型来回答许多领域出现的更为复杂的查询,例如使用逻辑连接($land$)、脱钩($$lor$)和存在量化符($divity)的查询,同时计算缺失的边缘。在这项工作中,我们提出了一个框架,用于高效回答关于不完整知识图表的复杂查询。我们把每个查询转换成一个端到端的不同目标,其中每个原子的真理值由事先训练的神经链接预测器计算。我们然后分析优化问题的两个解决方案,包括基于梯度的搜索和组合搜索。在我们实验中,拟议方法产生比状态设计方法更准确的结果 -- -- 黑箱神经模型对数百万个生成的查询进行了培训 -- -- 不需要对大规模和多样化的复杂查询进行训练。我们使用数量较少的培训数据,我们从8%到40%不等的位数,通过不同知识图表的查点模型来进行相对的改进。我们最后在每一个复杂的解算结果时,我们要在每一个解算出我们所查明的结果。

1
下载
关闭预览

相关内容

【CIKM2020】神经逻辑推理,Neural Logic Reasoning
专知会员服务
49+阅读 · 2020年8月25日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
0+阅读 · 2021年3月17日
Arxiv
27+阅读 · 2020年6月19日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
Arxiv
26+阅读 · 2018年2月27日
VIP会员
相关资讯
Top
微信扫码咨询专知VIP会员