We consider the problem of sharing a set of indivisible goods among agents in a fair manner, namely such that the allocation is envy-free up to any good (EFX). We focus on the problem of computing an EFX allocation in the two-agent case and characterize the computational complexity of the problem for most well-known valuation classes. We present a simple greedy algorithm that solves the problem when the agent valuations are weakly well-layered, a class which contains gross substitutes and budget-additive valuations. For the next largest valuation class we prove a negative result: the problem is PLS-complete for submodular valuations. All of our results also hold for the setting where there are many agents with identical valuations.
翻译:我们以公平的方式考虑在代理人之间分享一套不可分割货物的问题,即分配无嫉妒至任何好处(EFX)的问题。我们集中关注在两个代理人案件中计算EFX分配的问题,并描述最著名的估值类别问题的计算复杂性。我们提出了一个简单的贪婪算法,在代理人估值不够完善的情况下解决问题,该算法包含总替代品和预算追加估值。对于下一个最大的估值类别,我们证明这是一个负面结果:问题在于次级模式估值的PLS完成。我们的所有结果也存在于许多具有相同估值的代理人所处的环境中。