We study the fair allocation of indivisible goods among agents with identical, additive valuations but individual budget constraints. Here, the indivisible goods--each with a specific size and value--need to be allocated such that the bundle assigned to each agent is of total size at most the agent's budget. Since envy-free allocations do not necessarily exist in the indivisible goods context, compelling relaxations--in particular, the notion of envy-freeness up to $k$ goods (EFk)--have received significant attention in recent years. In an EFk allocation, each agent prefers its own bundle over that of any other agent, up to the removal of $k$ goods, and the agents have similarly bounded envy against the charity (which corresponds to the set of all unallocated goods). Recently, Wu et al. (2021) showed that an allocation that satisfies the budget constraints and maximizes the Nash social welfare is $1/4$-approximately EF1. However, the computation (or even existence) of exact EFk allocations remained an intriguing open problem. We make notable progress towards this by proposing a simple, greedy, polynomial-time algorithm that computes EF2 allocations under budget constraints. Our algorithmic result implies the universal existence of EF2 allocations in this fair division context. The analysis of the algorithm exploits intricate structural properties of envy-freeness. Interestingly, the same algorithm also provides EF1 guarantees for important special cases. Specifically, we settle the existence of EF1 allocations for instances in which: (i) the value of each good is proportional to its size, (ii) all goods have the same size, or (iii) all the goods have the same value. Our EF2 result extends to the setting wherein the goods' sizes are agent specific.


翻译:我们研究了在个体预算限制下,不可分割商品的公平分配问题。在这里,不可分割的商品——每个商品都有特定的大小和价值——需要被分配,使得分配给每个人的捆绑的总大小都不超过其预算。由于在不可分割商品的情况下,嫉妒自由的分配不一定存在,因此对嫉妒自由分配的松弛概念(特别是嫉妒自由到 $k$ 商品(EFk))近年来引起了广泛关注。在 EFk 分配中,每个人都喜欢自己的商品捆绑胜过其他人的商品捆绑(最多移动 $k$ 个商品),并且在向慈善机构(即所有未配分的商品)分配时,保持相似的嫉妒感。 最近 Wu 等人(2021)证明了一个在预算限制下满足 Nash 社会福利最大化的分配是 $\frac{1}{4}$-近似的 EF1 分配。然而,在精确计算(或甚至存在)EFk 分配方面仍然是一个引人注目的难题。通过提出一个简单、贪心、多项式时间复杂度的算法,我们在这个公平分配环境中取得了重要进展,计算出了预算约束下的 EF2 分配。我们算法的结果暗示了在这种公平分配背景下 EF2 分配的通用存在性。算法的分析利用了嫉妒自由的复杂结构特性。有趣的是,同样的算法也为重要的特殊情况提供了 EF1 的保证。具体而言,我们解决了以下情况的 EF1 分配问题:(i)每个商品的价值与其大小成比例,(ii)所有商品的大小相同,或者(iii)所有商品的价值相同。我们的 EF2 结果扩展到商品大小是个体特定的情况。

0
下载
关闭预览

相关内容

【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
28+阅读 · 2022年12月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
跨越注意力:Cross-Attention
我爱读PAMI
172+阅读 · 2018年6月2日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月4日
VIP会员
相关VIP内容
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
跨越注意力:Cross-Attention
我爱读PAMI
172+阅读 · 2018年6月2日
深度学习医学图像分析文献集
机器学习研究会
19+阅读 · 2017年10月13日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员