In this paper we propose a dimension-reduction strategy in order to improve the performance of importance sampling in high dimension. The idea is to estimate variance terms in a small number of suitably chosen directions. We first prove that the optimal directions, i.e., the ones that minimize the Kullback--Leibler divergence with the optimal auxiliary density, are the eigenvectors associated to extreme (small or large) eigenvalues of the optimal covariance matrix. We then perform extensive numerical experiments that show that as dimension increases, these directions give estimations which are very close to optimal. Moreover, we show that the estimation remains accurate even when a simple empirical estimator of the covariance matrix is used to estimate these directions. These theoretical and numerical results open the way for different generalizations, in particular the incorporation of such ideas in adaptive importance sampling schemes.
翻译:在本文中,我们提出一个降低维度战略,以便提高重要取样在高维方面的性能。 目的是在少数适当选择的方向上估计差异值。 我们首先证明最佳方向,即最大限度地减少与最佳辅助密度的Kullback-Lebeller差异的最佳方向,是与最佳共变矩阵的极端(小或大)基因值相关联的隐性因素。 然后我们进行广泛的数字实验,表明随着维度的增加,这些方向所提供的估计非常接近于最佳值。 此外,我们表明,即使使用一个简单的共变矩阵的经验性估计者来估计这些方向,估计也仍然准确。这些理论和数字结果为不同的概括性开辟了道路,特别是将这种想法纳入适应重要性抽样计划。