We introduce a new second order stochastic algorithm to estimate the entropically regularized optimal transport cost between two probability measures. The source measure can be arbitrary chosen, either absolutely continuous or discrete, while the target measure is assumed to be discrete. To solve the semi-dual formulation of such a regularized and semi-discrete optimal transportation problem, we propose to consider a stochastic Gauss-Newton algorithm that uses a sequence of data sampled from the source measure. This algorithm is shown to be adaptive to the geometry of the underlying convex optimization problem with no important hyperparameter to be accurately tuned. We establish the almost sure convergence and the asymptotic normality of various estimators of interest that are constructed from this stochastic Gauss-Newton algorithm. We also analyze their non-asymptotic rates of convergence for the expected quadratic risk in the absence of strong convexity of the underlying objective function. The results of numerical experiments from simulated data are also reported to illustrate the finite sample properties of this Gauss-Newton algorithm for stochastic regularized optimal transport, and to show its advantages over the use of the stochastic gradient descent, stochastic Newton and ADAM algorithms.
翻译:我们引入了一个新的第二顺序随机算法, 以估计两种概率测量方法之间的随机定序最佳运输成本。 源量测量可以是任意选择的, 可以是绝对连续的, 也可以是离散的, 而目标测量则假定是离散的。 要解决这种定序和半分解的最佳运输问题的半双方配方, 我们建议考虑一种使用从源量测量中抽样的数据序列的随机随机高斯- 牛顿算法。 这个算法被证明适应于根基锥体优化问题的几何性, 没有重要的超参数可以精确调整。 我们建立了几乎肯定的趋同性, 以及根据这种定序计算法构建的各种利益估计者的无规律性常态性常态性常态性常态性。 我们还分析了它们对于预期的四面风险的非随机趋同性趋同性算法, 没有从原始目标函数的强烈相交替性。 模拟数据的数值实验结果也被报告, 以说明这种测量- 牛顿 度测算法的定式样本特性特性, 显示其定式的惯性梯级运算法的优度, 显示其定式性后变后变式 。