Soft robots show compliance and have infinite degrees of freedom. Thanks to these properties, such robots are leveraged for surgery, rehabilitation, biomimetics, unstructured environment exploring, and industrial gripper. In this case, they attract scholars from a variety of areas. However, nonlinearity and hysteresis effects also bring a burden to robot modeling. Moreover, following their flexibility and adaptation, soft robot control is more challenging than rigid robot control. In order to model and control soft robots, a large number of data models are utilized in pairs or separately. This review classifies these applied data models into five kinds, which are the Jacobian model, analytical model, statistical model, neural network, and reinforcement learning, and compares the modeling and controller features, e.g., model dynamics, data requirement, and target task, within and among these categories. A discussion about the development of the existing modeling and control approaches is presented, and we forecast that the combination of offline-trained and online-learning controllers will be the widespread implementation in the future.
翻译:暂无翻译