It is known that for a discrete channel with correlated additive noise, the ordinary capacity with or without feedback is equal $ \log q-\mathcal{H}_{ch} $, where $ \mathcal{H}_{ch} $ is the entropy rate of the noise process and $ q $ is the alphabet size. In this paper, for a class of finite-state additive noise channels, it is shown that the zero-error feedback capacity is either zero or $C_{0f} =\log q -h_{ch} $, where $ h_{ch} $ is the {\em topological entropy} of the noise process. A topological condition is given to determine when the zero-error capacity with or without feedback is zero. We explicitly compute $ C_{0f}$ for several examples, including channels with isolated errors and a Gilbert-Elliot channel. Furthermore, the zero-error feedback capacity of a general channel model is revisited and {\em uniform zero-error feedback codes} are introduced. It is revealed that there is a close connection between zero-error communication and control of linear systems with bounded disturbances. A necessary and sufficient condition for stabilization of unstable linear systems over general channels with memory is obtained, assuming no state information at either end of the channel. It is shown that $ C_{0f} $ is the figure of merit for determining when bounded stabilization is possible. This leads to a "small-entropy theorem", stating that stabilization over finite-state additive noise channels can be achieved if and only if the sum of the topological entropies of the linear system and the channel is smaller than $\log q$.


翻译:已知的是, 对于具有相关添加噪声的离散频道, 普通的反馈能力等于 $ q- mathcal{H ⁇ ch} $, 其中, $\ log q- mathcal{H ⁇ ch} $ 是噪音过程的导流速率, $ Q Q Q=ch} 是字母大小 。 在本文中, 对于带有相关添加噪声的离散频道, 显示零度反馈能力为零 或 $C ⁇ 0f} ⁇ log q - h ⁇ ch} 美元, 美元是 噪音过程的 示意 = $ Q Q Q Q Q {H ⁇ ch}, 其中, 美元是 美元 $ 的表意 = =oq oq 。 我们明确计算$ C=f} 。 此外, 普通频道的频道的零度反馈能力是零度能力, = = rentror fro exf creal comm creal deal deal deal deal deal deal demotions se 。

0
下载
关闭预览

相关内容

【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
62+阅读 · 2021年8月20日
专知会员服务
25+阅读 · 2021年4月2日
【快讯】KDD2020论文出炉,216篇上榜, 你的paper中了吗?
专知会员服务
50+阅读 · 2020年5月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
一文搞懂反向传播
机器学习与推荐算法
18+阅读 · 2020年3月12日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关资讯
一文搞懂反向传播
机器学习与推荐算法
18+阅读 · 2020年3月12日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员