We address the following decision problem. Given a numeration system $U$ and a $U$-recognizable set $X\subseteq\mathbb{N}$, i.e. the set of its greedy $U$-representations is recognized by a finite automaton, decide whether or not $X$ is ultimately periodic. We prove that this problem is decidable for a large class of numeration systems built on linearly recurrent sequences. Based on arithmetical considerations about the recurrence equation and on $p$-adic methods, the DFA given as input provides a bound on the admissible periods to test.
翻译:我们处理以下决定问题。鉴于一个计数系统,即其贪婪的美元代表数的一组由一定的自动尺识别,我们解决了以下决定问题。鉴于一个计数系统,美元和美元可确认的一套美元,即X\subseq\mathbb{N}美元,即其贪婪的美元代表数的一组由一定的自动尺识别,我们决定美元是否最终是定期的。我们证明,对于建立在线性重复序列上的一大批计数系统来说,这一问题是可以分解的。根据对重现方程式的算术考虑和美元-美元-美元方法,作为投入的《德国联邦法》对可允许的时期规定了检验的界限。