Selecting safe landing sites in non-cooperative environments is a key step towards the full autonomy of UAVs. However, the existing methods have the common problems of poor generalization ability and robustness. Their performance in unknown environments is significantly degraded and the error cannot be self-detected and corrected. In this paper, we construct a UAV system equipped with low-cost LiDAR and binocular cameras to realize autonomous landing in non-cooperative environments by detecting the flat and safe ground area. Taking advantage of the non-repetitive scanning and high FOV coverage characteristics of LiDAR, we come up with a dynamic time depth completion algorithm. In conjunction with the proposed self-evaluation method of the depth map, our model can dynamically select the LiDAR accumulation time at the inference phase to ensure an accurate prediction result. Based on the depth map, the high-level terrain information such as slope, roughness, and the size of the safe area are derived. We have conducted extensive autonomous landing experiments in a variety of familiar or completely unknown environments, verifying that our model can adaptively balance the accuracy and speed, and the UAV can robustly select a safe landing site.


翻译:在不合作的环境中选择安全着陆点是朝着无人驾驶航空器完全自主迈出的关键一步。然而,现有方法具有普遍化能力和稳健性等常见问题。在未知环境中,其性能显著退化,错误无法自我检测和纠正。在本文中,我们建造了一个无人驾驶航空器系统,配备低成本的LIDAR和双筒照相机,通过探测平坦和安全的地面区域,实现在不合作环境中自动着陆。我们利用LIDAR的非重复扫描和高频FOV覆盖特征,制定了动态时间深度完成算法。结合深度地图的拟议自我评价方法,我们的模型可以动态地选择在推断阶段的LIDAR积累时间,以确保准确的预测结果。根据深度地图,可以得出高水平的地形信息,如斜度、粗度和安全区面积的大小。我们在各种熟悉或完全不为人所知的环境中进行了广泛的自动着陆实验,核实我们的模型能够适应性地平衡准确性和速度,无人驾驶飞行器可以稳健地选择一个安全着陆场。

0
下载
关闭预览

相关内容

迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【泡泡图灵智库】评估视觉惯性里程计的TUM VI基准(IROS)
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
Arxiv
4+阅读 · 2017年11月4日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【泡泡图灵智库】评估视觉惯性里程计的TUM VI基准(IROS)
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
【泡泡一分钟】LIMO:激光和单目相机融合的视觉里程计
泡泡机器人SLAM
11+阅读 · 2019年1月16日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
Top
微信扫码咨询专知VIP会员