This paper studies a framework, projected fixed-point method, for graph matching. The framework contains a class of popular graph matching algorithms, including graduated assignment (GA), integer projected fixed-point method (IPFP) and doubly stochastic projected fixed-point method (DSPFP). We propose an adaptive strategy to tune the step size parameter in this framework. Such a strategy improves these algorithms in efficiency and accuracy. Further, it guarantees the convergence of the underlying algorithms. Some preliminary analysis based on distance geometry seems to support that the optimal step size parameter has a high probability of 1 when graphs are fully connected. Secondly, it is observed that a popular projection method, softassign, is sensitive to graphs' cardinality(size). We proposed a dynamical softassign algorithm that is robust to graphs' cardinality. Combining the adaptive step size and the dynamical softassign, we propose a novel graph matching algorithm: the adaptive projected fixed-point method with dynamical softassign. Various experiments demonstrate that the proposed algorithm is significantly faster than several other state-of-art algorithms with no loss of accuracy.
翻译:本文研究图表匹配的框架, 预测固定点法。 框架包含一组受欢迎的图表匹配算法, 包括分级分配( GA)、 整数预测固定点法( IPFP) 和双随机预测固定点法( DSPFPP ) 。 我们提出一个适应性战略, 以调整这个框架中的职级大小参数。 这样的战略可以提高这些算法的效率和准确性。 此外, 它保证了基础算法的趋同。 一些基于远程几何学的初步分析似乎支持了在图形完全连接时, 最佳职级大小参数的概率为1。 其次, 观察到流行的投影法( IPFPF ) 和双随机性预测定点法( MSPFPPP ) 。 我们提出了一种动态软性算法, 以适应性职级大小和动态软点运算法相结合。 我们提出了一个新的图表匹配算法: 适应性预测的固定点法, 带有动态软标。 各种实验表明, 拟议的算法比其他几个没有准确性的状态算法要快得多。