One of the fundamental problems in network analysis is detecting community structure in multi-layer networks, of which each layer represents one type of edge information among the nodes. We propose integrative spectral clustering approaches based on effective convex layer aggregations. Our aggregation methods are strongly motivated by a delicate asymptotic analysis of the spectral embedding of weighted adjacency matrices and the downstream $k$-means clustering, in a challenging regime where community detection consistency is impossible. In fact, the methods are shown to estimate the optimal convex aggregation, which minimizes the mis-clustering error under some specialized multi-layer network models. Our analysis further suggests that clustering using Gaussian mixture models is generally superior to the commonly used $k$-means in spectral clustering. Extensive numerical studies demonstrate that our adaptive aggregation techniques, together with Gaussian mixture model clustering, make the new spectral clustering remarkably competitive compared to several popularly used methods.
翻译:网络分析的根本问题之一是在多层网络中发现社区结构,其中每一层代表各节点之间的一种边缘信息。我们提出基于有效的锥形层群集的综合光谱聚集方法。我们的集成方法的强烈动机是对加权相邻基体的光谱嵌入和下游美元-平均值聚集进行微妙的零星分析,在具有挑战性的制度下,社区检测的一致性是不可能的。事实上,所展示的方法可以估计最佳的锥形集成,从而将某些专门的多层网络模型中的误聚误差降到最低。我们的分析进一步表明,使用高斯混合模型的集成一般优于光谱聚中通常使用的美元-平均值。广泛的数字研究表明,我们的适应性集成技术,加上高斯混合模型集成,使得新的光谱聚群与几种普遍使用的方法相比具有很强的竞争力。