Aiming to alleviate data sparsity and cold-start problems of traditional recommender systems, incorporating knowledge graphs (KGs) to supplement auxiliary information has recently gained considerable attention. Via unifying the KG with user-item interactions into a tripartite graph, recent works explore the graph topologies to learn the low-dimensional representations of users and items with rich semantics. However, these real-world tripartite graphs are usually scale-free, the intrinsic hierarchical graph structures of which are underemphasized in existing works, consequently, leading to suboptimal recommendation performance. To address this issue and provide more accurate recommendation, we propose a knowledge-aware recommendation method with the hyperbolic geometry, namely Lorentzian Knowledge-enhanced Graph convolutional networks for Recommendation (LKGR). LKGR facilitates better modeling of scale-free tripartite graphs after the data unification. Specifically, we employ different information propagation strategies in the hyperbolic space to explicitly encode heterogeneous information from historical interactions and KGs. Our proposed knowledge-aware attention mechanism enables the model to automatically measure the information contribution, producing the coherent information aggregation in the hyperbolic space. Extensive experiments on three real-world benchmarks demonstrate that LKGR outperforms state-of-the-art methods by 2.2-29.9% of Recall@20 on Top-K recommendation.
翻译:为了减轻传统建议系统的数据偏僻性和冷热启动问题,将知识图表(KGs)纳入知识图表(KGs)以补充辅助信息,最近引起了相当多的关注。通过将KG与用户-项目互动结合成一个三方图表,最近的工作探索了图形表层学,以了解用户和具有丰富的语义的物品的低维表现;然而,这些真实世界的三方图通常是无规模的,其内在的等级图结构在现有的工程中未得到充分强调,从而导致建议性能低于最佳水平。为了解决这一问题并提供更准确的建议,我们提出了一个具有知识觉悟的建议方法,用超偏差的几何测量法,即Lorentzian知识增强的图层革命网络(LKGR)。LKGR便于在数据统一后更好地建模无比例的三方图。具体地说,我们在超偏斜空间采用不同的信息传播战略,以明确编码来自历史互动和KGs的混杂信息。我们拟议的知识认知机制使模型能够自动测量信息贡献,通过超偏偏偏差的图像网络生成了超低空空基空间基准的连续信息组合的L9-real-regal-regal-reglexxx