Social recommendation task aims to predict users' preferences over items with the incorporation of social connections among users, so as to alleviate the sparse issue of collaborative filtering. While many recent efforts show the effectiveness of neural network-based social recommender systems, several important challenges have not been well addressed yet: (i) The majority of models only consider users' social connections, while ignoring the inter-dependent knowledge across items; (ii) Most of existing solutions are designed for singular type of user-item interactions, making them infeasible to capture the interaction heterogeneity; (iii) The dynamic nature of user-item interactions has been less explored in many social-aware recommendation techniques. To tackle the above challenges, this work proposes a Knowledge-aware Coupled Graph Neural Network (KCGN) that jointly injects the inter-dependent knowledge across items and users into the recommendation framework. KCGN enables the high-order user- and item-wise relation encoding by exploiting the mutual information for global graph structure awareness. Additionally, we further augment KCGN with the capability of capturing dynamic multi-typed user-item interactive patterns. Experimental studies on real-world datasets show the effectiveness of our method against many strong baselines in a variety of settings. Source codes are available at: https://github.com/xhcdream/KCGN.
翻译:社会建议任务旨在预测用户对各种项目的偏好,同时纳入用户之间的社会联系,从而缓解合作过滤的稀少问题。虽然最近许多努力显示基于神经网络的社会建议系统的有效性,但若干重大挑战尚未得到妥善解决:(一) 大多数模型只考虑用户的社会联系,而忽视各项目之间相互依存的知识;(二) 大多数现有解决方案是为用户项目互动的单一类型设计的,使它们无法捕捉相互作用的异质性;(三) 在许多社会意识建议技术中,用户项目互动的动态性质没有受到多少探索。为应对上述挑战,这项工作提议建立一个知识-觉醒组合图形神经网络(KCGN),将不同项目和用户之间相互依存的知识联合引入建议框架。 KCGN通过利用共同信息来收集全球图形结构的相互作用,使用户项目关系与项目之间的高度一致。此外,我们进一步加强了KCGN的动态性质,以捕捉动态多类型用户项目互动模式的能力。在现实的GNV/网络设置中,实验性研究:在现实世界的基线/数据设置中,可以显示我们多种的源码方法。