We study the Gibbs posterior distribution from PAC-Bayes theory for sparse deep neural nets in a nonparametric regression setting. To access the posterior distribution, an efficient MCMC algorithm based on backpropagation is constructed. The training yields a Bayesian neural network with a joint distribution on the network parameters. Using a mixture over uniform priors on sparse sets of networks weights, we prove an oracle inequality which shows that the method adapts to the unknown regularity and hierarchical structure of the regression function. Studying the Gibbs posterior distribution from a frequentist Bayesian perspective, we analyze the diameter and show high coverage probability of the resulting credible sets. The method is illustrated in a simulation example.
翻译:我们从PAC-Bayes理论中研究Gibbs 后天分布理论,研究在非参数回归环境下稀有的深神经网。为了获取后天分布,我们建立了基于反光反射的高效MCMC算法。培训产生一个贝叶斯神经网络,在网络参数上联合分布。在网络重量的稀疏组合上,我们用一种比统一前程的混合方法,证明了一种甲骨文的不平等性,它表明该方法适应了回归函数的未知的规律性和等级结构。从常见的巴耶西亚角度研究Gibbs后天分布,我们分析了直径,并显示了由此产生的可靠组合的高覆盖概率。模拟示例说明了该方法。