Neurotechnologies are transforming how we measure, interpret, and modulate brain-body interactions, integrating real-time sensing, computation, and stimulation to enable precise physiological control. They hold transformative potential across clinical and non-clinical domains, from treating disorders to enhancing cognition and performance. Realizing this potential requires navigating complex, interdisciplinary challenges spanning neuroscience, materials science, device engineering, signal processing, computational modelling, and regulatory and ethical frameworks. This Perspective presents a strategic roadmap for neurotechnology development, created by early-career researchers, highlighting their role at the intersection of disciplines and their capacity to bridge traditional silos. We identify five cross-cutting trade-offs that constrain progress across functionality, scalability, adaptability, and translatability, and illustrate how technical domains influence their resolution. Rather than a domain-specific review, we focus on shared challenges and strategic opportunities that transcend disciplines. We propose a unified framework for collaborative innovation and education, highlight ethical and regulatory priorities, and outline a timeline for overcoming key bottlenecks. By aligning technical development with translational and societal needs, this roadmap aims to accelerate equitable, effective, and future-ready adaptive neurotechnologies, guiding coordinated efforts across the global research and innovation community.
翻译:暂无翻译