Snow is one of the toughest adverse weather conditions for object detection (OD). Currently, not only there is a lack of snowy OD datasets to train cutting-edge detectors, but also these detectors have difficulties learning latent information beneficial for detection in snow. To alleviate the two above problems, we first establish a real-world snowy OD dataset, named RSOD. Besides, we develop an unsupervised training strategy with a distinctive activation function, called $Peak \ Act$, to quantitatively evaluate the effect of snow on each object. Peak Act helps grading the images in RSOD into four-difficulty levels. To our knowledge, RSOD is the first quantitatively evaluated and graded snowy OD dataset. Then, we propose a novel Cross Fusion (CF) block to construct a lightweight OD network based on YOLOv5s (call CF-YOLO). CF is a plug-and-play feature aggregation module, which integrates the advantages of Feature Pyramid Network and Path Aggregation Network in a simpler yet more flexible form. Both RSOD and CF lead our CF-YOLO to possess an optimization ability for OD in real-world snow. That is, CF-YOLO can handle unfavorable detection problems of vagueness, distortion and covering of snow. Experiments show that our CF-YOLO achieves better detection results on RSOD, compared to SOTAs. The code and dataset are available at https://github.com/qqding77/CF-YOLO-and-RSOD.
翻译:雪是天体探测( OD) 最困难的恶劣天气条件之一。 目前, 不仅缺少用于训练尖端探测器的雪化 OD 数据集, 而且这些探测器也难以学习有助于在雪中探测的潜伏信息。 为了缓解上述两个问题, 我们首先建立一个名为 RSOD 的真实世界雪化 OD 数据集。 此外, 我们开发了一个不受监督的培训战略, 具有独特的激活功能, 叫做 $ Peak\ Act$, 以量化方式评估雪体对每个物体的影响。 峰值法案帮助将RSOD 的图像分级为四级, 并且根据我们的知识, RSO 是第一个量化评估和分级的雪化ODD 。 然后, 我们建议建立一个全新的 Croscros Fus (CF) 建立以 YOv5s为基础的轻量的ODD( 呼叫CF- Action O) 。 CFCF是一个插图集组合模块, 将FRO 网络和 Path Agreal-CFO 的优势整合起来。, RSO 和 Crelogal- ASyOL 的SO 的SODADAD Acreal decreal deal decremodal decolaldaldal 和 Slovealal ASaldaldaldald Odaldaldaldaldaldaldaldaldaldal