Recent work in open-domain question answering (ODQA) has shown that adversarial poisoning of the input contexts can cause large drops in accuracy for production systems. However, little to no work has proposed methods to defend against these attacks. To do so, we introduce a new method that uses query augmentation to search for a diverse set of retrieved passages that could answer the original question. We integrate these new passages into the model through the design of a novel confidence method, comparing the predicted answer to its appearance in the retrieved contexts (what we call Confidence from Answer Redundancy, e.g. CAR). Together these methods allow for a simple but effective way to defend against poisoning attacks and provide gains of 5-20% exact match across varying levels of data poisoning.
翻译:开放域问题解答(ODQA)的近期工作表明,投入环境的对抗性中毒可能导致生产系统的准确性大幅下降,然而,几乎没有什么甚至完全没有提出防范这些袭击的方法。为了这样做,我们引入了一种新的方法,利用“查询增强”来寻找能够解答原始问题的一套不同的检索通道。我们通过设计一种新的信任方法将这些新段落纳入模型,将预测的答案与其在检索环境中的外观(我们称之为“回答重复的自信”,如CAR )进行比较。 这些方法共同提供了一种简单而有效的方法来防范中毒袭击,并提供了在不同数据中毒水平上达到5-20%的准确匹配率。