We present a novel method for generating, predicting, and using Spatiotemporal Occupancy Grid Maps (SOGM), which embed future information of dynamic scenes. Our automated generation process creates groundtruth SOGMs from previous navigation data. We build on prior work to annotate lidar points based on their dynamic properties, which are then projected on time-stamped 2D grids: SOGMs. We design a 3D-2D feedforward architecture, trained to predict the future time steps of SOGMs, given 3D lidar frames as input. Our pipeline is entirely self-supervised, thus enabling lifelong learning for robots. The network is composed of a 3D back-end that extracts rich features and enables the semantic segmentation of the lidar frames, and a 2D front-end that predicts the future information embedded in the SOGMs within planning. We also design a navigation pipeline that uses these predicted SOGMs. We provide both quantitative and qualitative insights into the predictions and validate our choices of network design with a comparison to the state of the art and ablation studies.
翻译:我们提出了一个用于生成、预测和使用时空占用网格图(SOGM)的新颖方法,该方法将未来动态场景的信息嵌入其中。我们的自动生成过程从先前的导航数据中创建了地面真实的SOGM。我们以先前的工作为基础,根据动态特性建立注解的里雷达点,然后在时间标2D网格上进行预测:SOGMs。我们设计了一个3D-2D的进化前方结构,经过培训,可以预测SOGMs的未来时间步骤,并给出3D 利达尔框架作为输入。我们的管道完全由自我监督,从而使机器人能够终身学习。网络由3D的后端组成,可以提取丰富的功能,使里达尔框架能够进行语义分解,而2D的前端则预测SOGMs在规划中嵌入的未来信息。我们还设计一个导航管道,使用这些预测的SOGMs。我们提供定量和定性的预测,并验证我们的网络设计选择,与艺术和断层研究的状态进行比较。