The detection of small exoplanets with the radial velocity (RV) technique is limited by various poorly known noise sources of instrumental and stellar origin. As a consequence, current detection techniques often fail to provide reliable estimates of the significance levels of detection tests (p-values). We designed an RV detection procedure that provides reliable p-value estimates while accounting for the various noise sources. The method can incorporate ancillary information about the noise (e.g., stellar activity indicators) and specific data- or context-driven data (e.g., instrumental measurements, simulations of stellar variability) . The detection part of the procedure uses a detection test that is applied to a standardized periodogram. Standardization allows an autocalibration of the noise sources with partially unknown statistics. The estimation of the p-value of the test output is based on dedicated Monte Carlo simulations that allow handling unknown parameters. The procedure is versatile in the sense that the specific pair (periodogram and test) is chosen by the user. We demonstrate by extensive numerical experiments on synthetic and real RV data from the Sun and aCenB that the proposed method reliably allows estimating the p-values. The method also provides a way to evaluate the dependence of the estimated p-values that are attributed to a reported detection on modeling errors. It is a critical point for RV planet detection at low signal-to-noise ratio to evaluate this dependence. The python algorithms are available on GitHub. Accurate estimation of p-values when unknown parameters are involved is an important but only recently addressed question in the field of RV detection. Although this work presents a method to do this, the statistical literature discussed in this paper may trigger the development of other strategies.
翻译:使用辐射速度(RV)技术的小型外平板机的探测受到各种不为人知的动力和恒星来源的噪音来源的限制。因此,目前的探测技术往往无法对探测测试(p-values)的重要性水平提供可靠的估计值。我们设计了一个RV检测程序,提供可靠的p-value估计值,同时核算各种噪音源。该方法可以包括关于噪音(例如星际活动指标)和特定数据或由环境驱动的数据(例如工具测量参数、星际变异性模拟)的辅助信息。该程序的检测部分使用了标准化时期图中应用的检测测试测试。标准化使噪音源的自动校正与部分未知的统计数据水平相匹配。该测试输出值的估算值基于专门的蒙特卡洛模拟,从而可以处理未知参数。该程序非常灵活,用户选择特定对子(期图和测试)和特定数据或由环境驱动的数据(例如工具的测量参数),我们通过广泛的数字实验来验证来自太阳的合成和真实的RV值数据,而Cen-B的测算法则使用一种未知的测算方法,用于这一测测测测测测测地的测测测测测基的测基的测基的测基方法也可靠地的测测测测算方法,用于这个测测算的测算的测算结果的测算的测算结果的测算的测算的测算的测算结果的测算结果的测算结果的精确点的测算方法,这个测测算的测算的测测算的测算结果的测算的测算方法可以可靠测算的测算结果的测算的测算的测算的测算的测算结果。这个测算的测算的测算的测算的测算的测算的测算的测算的测算的测算的测算的测算的测算的测算的测算结果的测算方法为了这个测算的测算结果的测算结果的测算结果的测算结果的测算法的测算结果的测算的测算的测算的测算结果的测算的测算的测算的测算方法是这个测算的测算的测算的测算的测算法的测算的测算的测算的测算的测算的测算