The purpose of this work is to analyze an optimal control problem for a semilinear elliptic partial differential equation (PDE) involving Dirac measures; the control variable corresponds to the amplitude of forces modeled as point sources. We analyze the existence of optimal solutions and derive first and, necessary and sufficient, second order optimality conditions. We devise a solution technique that discretizes the state and adjoint equations with continuous piecewise linear finite elements; the control variable is already discrete. We analyze convergence properties of discretizations and obtain an a priori error estimate for the underlying approximation of an optimal control variable.
翻译:这项工作的目的是分析涉及Dirac措施的半线性椭圆部分差分方程(PDE)的最佳控制问题;控制变量与以点源为模型的强度相对应。我们分析了最佳解决方案的存在,并得出了第一和、必要和足够的第二顺序最佳条件。我们设计了一种解决方案技术,将状态方程和连接方程与连续的小片线性有限元素分离;控制变量已经离散。我们分析了离散的汇合特性,并获得了最佳控制变量基本近似的先验误差估计。