In this paper, a long-term survival model under competing risks is considered. The unobserved number of competing risks is assumed to follow a negative binomial distribution that can capture both over- and under-dispersion. Considering the latent competing risks as missing data, a variation of the well-known expectation maximization (EM) algorithm, called the stochastic EM algorithm (SEM), is developed. It is shown that the SEM algorithm avoids calculation of complicated expectations, which is a major advantage of the SEM algorithm over the EM algorithm. The proposed procedure also allows the objective function to be split into two simpler functions, one corresponding to the parameters associated with the cure rate and the other corresponding to the parameters associated with the progression times. The advantage of this approach is that each simple function, with lower parameter dimension, can be maximized independently. An extensive Monte Carlo simulation study is carried out to compare the performances of the SEM and EM algorithms. Finally, a breast cancer survival data is analyzed and it is shown that the SEM algorithm performs better than the EM algorithm.


翻译:本文考虑了在相互竞争的风险下的长期生存模式。 未经观察的相竞风险数量假定会遵循一种负面的二进制分布, 能够捕捉出超分散和低分散。 考虑到潜在的相互竞争的风险, 缺少数据, 开发出众所周知的预期最大化算法的变异, 称为随机的EM 算法( SEM 算法 ) 。 显示SEM 算法避免计算复杂的预期, 这是SEM 算法的主要优势。 拟议的程序还允许将目标函数分成两个更简单的函数, 一个函数与治愈率相关的参数相对应,另一个函数则与递进时间相关的参数相对应。 这种方法的优点是, 每一个简单的函数, 低参数尺寸的, 都可以独立最大化。 一个广泛的蒙特卡洛模拟研究, 比较SEM 和EM 算法的性能。 最后, 对乳腺癌生存数据进行了分析, 并显示SEM 算法比EM 算法要好。

0
下载
关闭预览

相关内容

SEM 是 Search Engine Marketing 的缩写,中文意思是搜索引擎营销。SEM 是一种新的网络营销形式。SEM 所做的就是全面而有效的利用搜索引擎来进行网络营销和推广。SEM 追求最高的性价比,以最小的投入,获最大的来自搜索引擎的访问量,并产生商业价值。
专知会员服务
44+阅读 · 2020年12月18日
不可错过!华盛顿大学最新《生成式模型》课程,附PPT
专知会员服务
64+阅读 · 2020年12月11日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
机器学习笔试题精选
人工智能头条
13+阅读 · 2018年7月22日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
A spatially adaptive phase-field model of fracture
Arxiv
0+阅读 · 2021年9月21日
VIP会员
相关VIP内容
专知会员服务
44+阅读 · 2020年12月18日
不可错过!华盛顿大学最新《生成式模型》课程,附PPT
专知会员服务
64+阅读 · 2020年12月11日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
机器学习笔试题精选
人工智能头条
13+阅读 · 2018年7月22日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】免费书(草稿):数据科学的数学基础
机器学习研究会
20+阅读 · 2017年10月1日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员