Vision Transformer (ViT), as a powerful alternative to Convolutional Neural Network (CNN), has received much attention. Recent work showed that ViTs are also vulnerable to adversarial examples like CNNs. To build robust ViTs, an intuitive way is to apply adversarial training since it has been shown as one of the most effective ways to accomplish robust CNNs. However, one major limitation of adversarial training is its heavy computational cost. The self-attention mechanism adopted by ViTs is a computationally intense operation whose expense increases quadratically with the number of input patches, making adversarial training on ViTs even more time-consuming. In this work, we first comprehensively study fast adversarial training on a variety of vision transformers and illustrate the relationship between the efficiency and robustness. Then, to expediate adversarial training on ViTs, we propose an efficient Attention Guided Adversarial Training mechanism. Specifically, relying on the specialty of self-attention, we actively remove certain patch embeddings of each layer with an attention-guided dropping strategy during adversarial training. The slimmed self-attention modules accelerate the adversarial training on ViTs significantly. With only 65\% of the fast adversarial training time, we match the state-of-the-art results on the challenging ImageNet benchmark.


翻译:作为革命神经网络(CNN)的强大替代物,维特变形器(ViT)作为革命性神经网络(CNN)的强大替代物,受到了很多关注。最近的工作显示维特公司也容易受到CNN等对抗性例子的伤害。为了建立强大的维特公司,一个直观的方法是应用对抗性培训,因为它被显示为实现强力CNN公司的最有效方法之一。然而,对抗性培训的一个主要限制是其沉重的计算成本。维特公司采用的自我关注机制是一种计算性强的操作,其费用随着投入补丁的数量而增加四分化,使得维特公司的对抗性培训更加耗时。在这项工作中,我们首先全面研究各种愿景变形器的快速对抗性培训,并展示其效率和稳健之间的关系。然后,为了加速维特公司对立式的对抗性培训,我们建议高效关注引导反向培训机制。具体地依靠自我关注的特殊性,我们积极消除每一层的某些补丁,在对抗性培训期间的注意力引导下击退战略。我们首先全面研究关于各种愿景变式的自对立式培训,即快速对立式对立式的自我培训。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年9月16日
Adversarial Training for High-Stakes Reliability
Arxiv
0+阅读 · 2022年9月15日
Arxiv
0+阅读 · 2022年9月15日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员