A model must adapt itself to generalize to new and different data during testing. In this setting of fully test-time adaptation the model has only the test data and its own parameters. We propose to adapt by test entropy minimization (tent): we optimize the model for confidence as measured by the entropy of its predictions. Our method estimates normalization statistics and optimizes channel-wise affine transformations to update online on each batch. Tent reduces generalization error for image classification on corrupted ImageNet and CIFAR-10/100 and reaches a new state-of-the-art error on ImageNet-C. Tent handles source-free domain adaptation on digit recognition from SVHN to MNIST/MNIST-M/USPS, on semantic segmentation from GTA to Cityscapes, and on the VisDA-C benchmark. These results are achieved in one epoch of test-time optimization without altering training.
翻译:模型必须自我调整,以便在测试过程中对新的和不同的数据进行概括化。 在完全测试时间适应的这一设置中,模型只有测试数据及其自己的参数。 我们提议通过测试最小化(tent)来适应: 我们优化以预测的星盘测量的信任模式。 我们的方法估算了标准化统计数据,优化了频道式的离子转换,以便在每批产品上更新。 测试减少了对腐败图像网和CIFAR-10/100进行图像分类的一般化错误,并在图像网- C上达到了一个新的最先进的错误。 帐篷处理了无源域适应数据识别,从SVHN到MNIST/MNIST-M/USPS,从GTA到城市景区和VisDA-C基准。 这些结果在一次测试时间优化中实现,而不改变培训。