We present a edge-coloured analogue of the duality theorem for transitive tournaments and directed paths. Given a edge-coloured path $P$ whose edges alternate blue and red, we construct a edge-coloured graph $D$ so that for any edge-coloured graph $G$ $$ P \to G \Leftrightarrow G \not\to D. $$ The duals are simple to construct, in particular $|V(D)|=|V(P)|-1$.
翻译:我们为过渡性锦标赛和定向道路展示了双色的双色样板。鉴于双色路径为P$,其边缘是蓝色和红色的交替,我们建造了一个彩色边图,以便任何彩色边图都用G$G$至G$G\ Leftrightrow G\not\\ to D.$G$构建双色,特别是$V(D) ⁇ V(P) ⁇ 1美元。