We show that given a SM instance G as input we can find a largest collection of pairwise edge-disjoint stable matchings of G in time linear in the input size. This extends two classical results: 1. The Gale-Shapley algorithm, which can find at most two ("extreme") pairwise edge-disjoint stable matchings of G in linear time, and 2. The polynomial-time algorithm for finding a largest collection of pairwise edge-disjoint perfect matchings (without the stability requirement) in a bipartite graph, obtained by combining K\"{o}nig's characterization with Tutte's f-factor algorithm.
翻译:我们显示,以 SM 实例 G 作为输入, 我们可以在输入大小中找到最大的对齐边缘不连接稳定匹配。 这延伸了两个经典结果 : 1. Gale- Shapley 算法, 最多可以找到两种( “ 极端” ) 的对齐边缘不连接稳定匹配 G, 和 2. 在双边图中找到最大的对齐边缘不连接完全匹配的组合时间算法( 没有稳定要求 ), 这是通过将 K\\ “ { o} nig ” 的特性与 Tutte 的 f- macor 算法结合而获得的 。