In the decremental single-source shortest paths problem, the goal is to maintain distances from a fixed source $s$ to every vertex $v$ in an $m$-edge graph undergoing edge deletions. In this paper, we conclude a long line of research on this problem by showing a near-optimal deterministic data structure that maintains $(1+\epsilon)$-approximate distance estimates and runs in $m^{1+o(1)}$ total update time. Our result, in particular, removes the oblivious adversary assumption required by the previous breakthrough result by Henzinger et al. [FOCS'14], which leads to our second result: the first almost-linear time algorithm for $(1-\epsilon)$-approximate min-cost flow in undirected graphs where capacities and costs can be taken over edges and vertices. Previously, algorithms for max flow with vertex capacities, or min-cost flow with any capacities required super-linear time. Our result essentially completes the picture for approximate flow in undirected graphs. The key technique of the first result is a novel framework that allows us to treat low-diameter graphs like expanders. This allows us to harness expander properties while bypassing shortcomings of expander decomposition, which almost all previous expander-based algorithms needed to deal with. For the second result, we break the notorious flow-decomposition barrier from the multiplicative-weight-update framework using randomization.
翻译:在衰落的单一来源最短路径问题中,我们的目标是保持从固定来源美元到每个顶点美元之间的距离,一个正被边缘删除的以美元为顶尖的图表,正在删除。在本文中,我们通过展示一个近最佳的确定性数据结构来完成关于该问题的一长系列研究,该结构维持了1美元(1 ⁇ 1+1美元)的近似距离估计值,并运行总更新时间为$m ⁇ 1+o(1)美元。我们的结果特别消除了Hennger et al. [FOCS'14] 之前的突破结果所要求的隐蔽的对冲假设,这导致我们的第二个结果:美元(1\\\ epsilon) 的近似线性时间算算法,在非定向的图表中,能力和成本可以超过边缘和脊椎。在任何能力上的最大流的算法中,或以任何能力基础超线性框架的微成本流。我们的结果基本上完成了在非方向图表中大致流动的图。这一关键技术使得我们从前一流扩展到前一线形的曲线的图。