Segmenting medical images accurately and reliably is important for disease diagnosis and treatment. It is a challenging task because of the wide variety of objects' sizes, shapes, and scanning modalities. Recently, many convolutional neural networks (CNN) have been designed for segmentation tasks and achieved great success. Few studies, however, have fully considered the sizes of objects, and thus most demonstrate poor performance for small objects segmentation. This can have a significant impact on the early detection of diseases. This paper proposes a Context Axial Reserve Attention Network (CaraNet) to improve the segmentation performance on small objects compared with several recent state-of-the-art models. We test our CaraNet on brain tumor (BraTS 2018) and polyp (Kvasir-SEG, CVC-ColonDB, CVC-ClinicDB, CVC-300, and ETIS-LaribPolypDB) segmentation datasets. Our CaraNet achieves the top-rank mean Dice segmentation accuracy, and results show a distinct advantage of CaraNet in the segmentation of small medical objects.
翻译:准确可靠地分割医疗图象对于疾病诊断和治疗非常重要, 这是一项具有挑战性的任务, 因为物体大小、 形状和扫描方式多种多样。 最近, 许多进化神经网络(CNN) 被设计为分解任务, 并取得了巨大成功。 然而, 很少有研究充分考虑到物体的大小, 从而显示小物体分解的性能不佳。 这对早期发现疾病有重大影响。 本文建议建立一个环境轴心关注网( CaraNet), 与最近几个最先进的模型相比, 改善小物体的分解性能。 我们测试我们的CaraNet( BRATS 2018) 和 聚苯( Kvasir- SEG, CVC- ClincDB, CVC- ClinicDB, CVC- 300, 和 ETIS- LaribpolypDB) 分解数据集。 我们的CaraNet在小医疗对象分解中获得了最高级的分解精确性, 结果显示CaraNet在小物体分解中具有明显优势 。