Generative AI systems are increasingly assisting and acting on behalf of end users in practical settings, from digital shopping assistants to next-generation autonomous cars. In this context, safety is no longer about blocking harmful content, but about preempting downstream hazards like financial or physical harm. Yet, most AI guardrails continue to rely on output classification based on labeled datasets and human-specified criteria,making them brittle to new hazardous situations. Even when unsafe conditions are flagged, this detection offers no path to recovery: typically, the AI system simply refuses to act--which is not always a safe choice. In this work, we argue that agentic AI safety is fundamentally a sequential decision problem: harmful outcomes arise from the AI system's continually evolving interactions and their downstream consequences on the world. We formalize this through the lens of safety-critical control theory, but within the AI model's latent representation of the world. This enables us to build predictive guardrails that (i) monitor an AI system's outputs (actions) in real time and (ii) proactively correct risky outputs to safe ones, all in a model-agnostic manner so the same guardrail can be wrapped around any AI model. We also offer a practical training recipe for computing such guardrails at scale via safety-critical reinforcement learning. Our experiments in simulated driving and e-commerce settings demonstrate that control-theoretic guardrails can reliably steer LLM agents clear of catastrophic outcomes (from collisions to bankruptcy) while preserving task performance, offering a principled dynamic alternative to today's flag-and-block guardrails.
翻译:暂无翻译